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Abstract

In the data sciences, a variety of regularization algorithms have been proposed to overcome
overfitting, leverage sparsity, or enhance prediction. We discuss a variety of techniques
within this framework, including penalization, early halting, ensembling, and model
averaging, using a wide definition of regularization, which involves regulating model
complexity by adding information in order to solve ill-posed problems or prevent overfitting.
Aspects of their actual implementation are explored, as well as accessible R-packages and
examples. We surveyed three general medical publications to determine the extent to which
these techniques are employed in medicine. With the exception of random effects models, it
demonstrated that regularization procedures are rarely used in real clinical applications. As a
result, we propose that regularization procedures be used more frequently in medical
research. The sole disadvantage of regularization procedures in instances when other
approaches work well is increased complexity in the conduct of the biostatistics studies,
which might provide obstacles in terms of computer resources and skill on the part of the
data analyst. Both can and should, in our opinion, be addressed by investing in proper

computing infrastructure and instructional resources.
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INTRODUCTION

Regularization's overarching goal is to control model complexity by providing information,
allowing us to solve ill-posed problems and avoid overfitting. Regularization strategies
include penalization,1,2 early stopping,3,4 ensembling5,6 and model averaging within this
wide definition.7 These statistical tools have long been used in medical research.
Penalization, for example, is used in variable or model selection using ridge regressionl or the
least absolute shrinkage and selection operator (LASSO).2 These methods can also be used in
the context of missing data8, causal analyses9, and so on. Bayesian hierarchical models are
also utilized for evidence synthesis.10 Whereas standard meta-analysis focuses on the
cumulative impact across a number of included studies, the same hierarchical models may
also be used for dynamic borrowing, which is the estimation of an effect in one research using
information borrowed from previous studies via shrinkage estimation.11 Regularization has
clinical uses ranging from pharmacovigilancel2 to non-small-cell lung cancerl3 to

Alzheimer's disease.14

Although there is a growing literature on regularization and a multitude of strategies
available to solve the challenges listed above, it is currently unknown to what degree these
methods are employed in clinical care and what kind of problems they address. To help
answer these issues, we conducted a systematic evaluation of recent volumes of three general
medical journals: the Journal of the American Medical Association (JAMA), the New
England Journal of Medical (NEJM), and the British Medical Journal (BMJ).

The rest of this paper is structured as follows. Section 2 provides an overview of
regularization procedures, beginning with a brief history of regularization and focusing on
topics such as penalization, early halting, ensembling, and model averaging. Section 3 reports
on a survey of papers from medical journals that outline the present state of regularization
applications in clinical medicine. Section 4 has some instances before Section 5 concludes

with some final remarks.
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2.REGULARIZATION APPROACHES

In this part, we will discuss several regularization methods. We will develop precise goals as
well as appropriate statistical models and strategies to achieve them. Penalization and
incorporating external and historical data (Section 2.1), early halting (Section 2.2),
ensembling (Section 2.3), and other concepts such as introducing noise (Section 2.4) are
examples of regularization procedures. Table 1 outlines all of these regularization kinds, their
aims, and the statistical approaches used to achieve them. This part finishes with some

practical observations on regularization (part 2.6) and related software (Section 2.7).

Type Description Commen statistical approaches
Penalizamnan Add penalty termis) ta fitung criterion = Ridge regressian, LASSO), elastic net
(Secdon 2.1} = Bayesian regularization priors

Constraints for parameters
— Random effects
= Semiparametric regression

Early stopping Early stopping of an iterative fitting procedure - Coeffident paths in penalization approzaches
(Secion 1.3) Hoosting
— Pruning of trees

= Learning rate in deep newral neowarks

Erzembling Combine multiple base-procedures to an ensemble - Bagging
(Secdon 2.3) — Random forests
= {Bayesian} model averaging
- Boosting
Orher approaches - = Injecting nole
(Section 2.4) — Random probing in model selection

= Qut-of-sample evaluation

PENALIZATION

By combining (a) a (lack of) fit criteria expressing a model's capacity to match the provided
data with (b) a penalty that quantifies model complexity, penalization techniques make the
trade-off between model fit and model complexity clear. This approach will be introduced in
greater depth in the following for parametric models with parameter vectors, although the
principles are instantly generalizable to semi- and nonparametric models. The letter y will
indicate the observed data, and we will demonstrate penalization along regression-type
models, where y represents a vector of recorded response values and contains the regression

coefficients.
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Figure 1. Coefficient paths obtained by applying the least absolute shrinkage and selection
operator (LASSO)

Finally, applying the penalty to functions rather than the parameter vector allows for the
enforcement of various sorts of regularization behaviour. Furthermore, including the penalty
on transformations or basis function expansions of the original covariates adds flexibility.
Some areas of significant focus in the recent decade have been:

*Fusion penalties: When evaluating the impacts of characteristics that may be arranged in any
meaningful way, the objective is to fuse particular effects. Ordinal categorical covariate
effects are just one example of this. The 'fused LASSO'33, which penalizes the L1 norm of
both coefficients and their subsequent differences, was one of the early recommendations,
although numerous extensions have been proposed in the literature since then.34-39 Tutz and
Gertheiss provide a comprehensive analysis of the topic 'Regularized regression for
categorical data' for both categorical predictors and responses.40 Several scholars have
examined effect fusion within the Bayesian framework, including Pauger et al.4l and
Malsiner-Walli et al.42.
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*Semiparametric function estimation Using smoothness priors where a flexible influence of a
covariate of interest must be evaluated. Working with function spaces and associated norms,
such as the functional L2 loss pen, which is the integrated squared second derivative that
penalizes function curvature, is one way. This is the foundation for the well-known particular
case of smoothing splines. When estimating the impact of interest in terms of a basis
expansion, penalties can be created for the basis coefficients using penalized splines44,45,
being one of the most popular examples. Penalties may, therefore, be designed to enforce not
just smoothness but also additional features such as monotonicity, convexity/concavity, and
continuous limiting behaviour.46,47

sStructured additive regression models that evaluate regression predictors that are an additive
mixture of several forms of effects based on covariate vectors of diverse types and connected
with quadratic penalties to enforce desired qualities of the individual effects. Structured
additive regression, for example, includes nonlinear effects of continuous variables, changing
coefficient terms, interaction surfaces, random effects, and spatial effects as special examples;
for further information, see Fahrmeir et al.48 and Fahrmeir and Kneib49.

*Single index models that, in a data-driven manner, expand generalized linear and additive
models by estimating the link function that translates the regression predictor to the
conditional expectation of the response variable. Regularization is necessary for this section
of the model when a flexible, nonparametric method is used for the link function.50 Single

index models with a linear predictor combine nonlinear and linear modelling approaches.
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Figure 2. Cross-validation error curve for the LASSO applied to the prostate cancer data
from Section 2.7.
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Early stopping

Many statistical and machine learning algorithms construct a (possibly complicated) model
by iteratively improving a basic model toward the maximum complex scenario permitted by
the model specification. In such cases, one method of inducing regularization is to stop the
fitting process before the most complex model is achieved, i.e. to identify the best trade-off
between model simplicity (models close to the initial model) and fit the data (models close to
the final, most complex model) by stopping early. Indeed, when considering the complete
path of coefficients produced by varying the penalty parameter from infinity (simplest model
determined by minimizing the penalty) to zero (complex model fit without penalization), the
penalization approaches discussed in the previous section can also be cast into this

framework.

Ensembling and model averaging

While the previous two techniques explicitly included regularization into a single model, we
now shift to regularization by mixing a number of models with the goal of improving model
performance. Consider a model that has a high capacity to match the provided data but a
high variability, such that the model does not generalize well to new data. If numerous
variations of such a model are available, the variability can be decreased by assembling the
models into an ensemble or averaging across predictions or other values produced from the
models.

Other regularization approaches

Regularization approaches are various methods used to improve model-fitting processes.
Some examples include injecting noise, random forests, random probing, out-of-sample
evaluation strategies, and drop-out in neural networks. Injecting noise introduces distortion
in the model-fitting process, while random forests have two steps of randomization. Random
probing introduces simulated additional covariates independent of the response of interest,
helping distinguish informative and non-informative covariates in model selection
procedures. Out-of-sample evaluation strategies determine the model's ability to generalize
beyond observed data based on hold-out datasets. Drop-out in neural networks randomly

shuts down part of neurons in one layer to avoid overfitting due to co-adaption.
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R implementation of different regularization approaches

The extra material of this work contains an example implementation of several regularization
algorithms. For example purposes, we utilized a Kaggle data set on prostate cancer.79 The
data includes information on 100 patients' tumours (radius, texture, perimeter, and so on) as
well as their diagnosis (binary result). We compare the area under the curve (AUC) and mean
classification error (MCE) of six different regularization approaches, namely a classification
tree (CART), a random forest, subset selection, rigde regression, LASSO, and elastic net, to
standard logistic regression. The hyperparameters are selected using a 10-fold CV, and the
results are averaged across ten repeats. The regularization approaches surpass ordinary

logistic regression in this scenario.

The state of regularization applications in medicine

We surveyed the literature in three prominent medical journals to determine how much
regularization is utilized in published medical research. To that end, we examined all issues of
the Journal of the American Medical Association (JAMA), the New England Journal of
Medicine (NEJM), and the British Medical Journal (BMJ) published between January and
September 2020. These publications were chosen because they are among the top general
medical journals in the world in terms of impact factors. We identified and examined all
original research publications, yielding 383 articles; see the PRISMA flow chart in the

appendix for more information.

Overview of used regularization methods

The study screened 380 articles for regularization applications using statistical methods,
using the definition and examples provided in Section 2. The results were collected in an
Excel spreadsheet, which includes the digital object identifier, journal, first author's name,
title, sample sizes, and the type of software used for analyses. The study also extracted the
type of software used for the analyses. The main findings regarding the use of regularization
are summarized in Table 2, with an additional table summarizing study characteristics. The
results were collected in an Excel spreadsheet, which is provided as a supplement.
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Mo Random A Random Subset

regubarizanon  offeco Bayes Panalzagen priert CV Smoothing Boosong  forest selection
JAMA 62 (61%) 35 (35%) (1% 2(2%) o0% 1 (1% 0(0%) L% 1 (I 0 {05
MEM 121 {T4%) 3l {19%) BsEy | (1%) 2% 1 1%)y 2{1%) 0 (0 O {0%) 0 {0
BM) 70 (&%) A 33%) 7 (5% 3(3%) [ {I%)y O(0% 1{1%) 1{1%) 0 (0% I (1%}
Total 253 (67%) 104 (2T%) 16 (4%) & (1%) J{I%y 2(1%) 3 (1% 2(1'%) | {0%) I {0r%)

OV oross-validation: JAMA: [ourral of the American Medcal Association; MEJM: Mew England |owmal of Medicine: BM): Brivish Medical Journzl

Discussion of specific examples

Other than random effects modelling, each regularization approach described in Table 2 is
briefly discussed in the examined works. We do not include these works in the references in
the rest of this section since they act as examples rather than literature citations. The online

supplement contains all of the necessary information.

Examples

We review chosen biostatistical examples from the literature to highlight the adaptability of
applying regularization approaches and their possible positive impacts.

Variable selection and shrinkage methods for linear regression

The prostate cancer data set examined in Chapter 3.4 of Hastie et al.87 with shrinkage
approaches for linear regression is a well-known example in the statistical learning field. The
information comes from research conducted by Stamey et al.88, who evaluated the level of
prostate-specific antigen (PSA) in 97 prostate cancer patients prior to radical prostatectomy.
The correlation of log PSA (Ipsa) to eight clinical variables was investigated, including log
cancer volume (Ica), log prostate weight (weight), age, log of benign prostatic hyperplasia
amount (Ibph), seminal vesicle invasion (svi), log of capsular penetration (Icp), Gleason score

(gleason), and percent of Gleason scores 4 or 5 (pgg4?).
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Using additional a priori information for evidence synthesis

Borrowing information, such as from observational research, to support a small-scale
randomized trial can be accomplished through the use of a shrinkage estimate within a
Bayesian random effects meta-analysis.11 The method first analyzes the observational data
in a hierarchical model with the shrinkage estimator and then uses the resultant posterior
distribution to inform the RCT analysis. Rover and Friedel1 demonstrated the efficiency
benefit of this strategy in the setting of Creutzfeldt-Jakob illness. This is an uncommon illness
with an incidence of 1 in 1,000,000 people. An RCT on doxycycline89 was halted early, with
just 12 patients participating. An observational research, however, provided further data on
88 individuals. Cox proportional hazards regression was used to examine the primary

endpoint of all-cause death.
Boosting capture-recapture methods

Systematic reviews of clinical trials should include all relevant studies on the subject.
Capture-recapture analyses have been developed to assess the comprehensiveness of
systematic literature reviews. These need the selection of a suitable model. Riicker et al.92
proposed combining capture-recapture analysis with componentwise boosting to achieve this
goal. The boosting technique allows you to define both necessary and optional variables that
are always included in the model. The latter are only included if they are relevant. This
method proved to be resistant to overfitting, and an effective model for statistical inference
was generated automatically. Riicker et al.92, in particular, compared componentwise
boosting to a manually chosen Poisson model to predict the number of missing references for
two systematic reviews. The manually chosen model predicted 82 missing articles (95% CI:
52-128) in the first analysis, whereas the boosting approach discovered 127 (95% CI: 86-186)
missing articles, and in the second case, boosting produced a more efficient estimate of 188
(95% CI: 159-223) than the best manually selected model (140 missing articles with a 95% CI:
116-168).
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Conclusion

A variety of regularization algorithms have been proposed to address issues such as
overfitting, data sparsity, and improving prediction and generalizability of outcomes. We
explored a variety of techniques within this framework, including penalization, early halting,
ensembling, and model averaging, using a wide definition of regularization, namely the act of
adding information to regulate model complexity. We talked about the practical issues of
their implementation, such as the various R-packages. In this paper, we focused on R as a
programming language and showed how to employ regularization methods in an R
implementation. Regularization procedures, on the other hand, are also incorporated in
other statistical tools. Penalization methods such as LASSO and Ridge regression, for
example, are implemented in SAS's GLMSELECT and REG procedures, whereas more
complicated penalization methods may be found in PROC TPSPLINE. PROC HPFOREST,
for example, provides a random forest implementation. The Bayesian technique may be used
in a variety of ways, including PROC FMM, PROC GENMOD, PROC LIFEREG, and
PROC PHREG support Bayesian analysis via the BAYES statement, whereas PROC
BGLIMM and PROC MCMC are specially designed for Bayesian estimation.93 Similarly,
xtreg, lasso, and boost in Stata implement random effects models, LASSO penalization, and
boosting, respectively. Examples were supplied to demonstrate the actual application of
regularization in order to encourage more widespread adoption of these techniques in
medicine. This is on the background of our review of recent issues of three general medical
journals, which revealed that regularization approaches could be used more. The main
exception is random effects models, which appear very often. Other regularization methods
were rarely used. We believe that there is room for improvement in the application of
regularization approaches in clinical medicine. They may be used on a frequent basis because
they only improve analysis and interpretation. The sole disadvantage of regularization
procedures in instances when other approaches work well is increased complexity in the
conduct of the studies, which might provide obstacles in terms of computer resources and
skill on the part of the data analyst. Both can and should, in our opinion, be addressed by

investing in proper computing infrastructure and instructional resources.
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